Temporal Changes in Left Ventricular Mechanics: Impact of Bed Rest and Exercise
BACKGROUND Current techniques used to assess cardiac function following spaceflight or head-down tilt bed rest (HDTBR) involve invasive and time consuming procedures such as Swan-Ganz catheterization or cardiac magnetic resonance imaging. An alternative approach, echocardiography, can monitor cardia...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Other |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND Current techniques used to assess cardiac function following spaceflight or head-down tilt bed rest (HDTBR) involve invasive and time consuming procedures such as Swan-Ganz catheterization or cardiac magnetic resonance imaging. An alternative approach, echocardiography, can monitor cardiac morphology and function via sequential measurements of left ventricular (LV) mass and ejection fraction (EF). However, LV mass and EF are insensitive measures of early (subclinical) cardiac deconditioning, and a decrease in LV mass and EF become evident only once significant deconditioning has already occurred. The use of more sensitive and specific echocardiographic techniques such as speckle tracking imaging may address the current limitations of conventional cardiac imaging techniques to provide insight into the magnitude and time course of cardiac deconditioning. METHODS Speckle tracking assessment of longitudinal, radial, and circumferential strain and twist was used to evaluate the impact of 70 days of HDTBR (n=7) and HDTBR + exercise (n=11) on temporal changes in LV mechanics. Echocardiograms were performed pre (BR-2), during (BR31, 70), and following (BR+4hr) HDTBR. Multi-level modeling was used to evaluate the effect of HDTBR condition (Control, Exercise) on cardiac variables. RESULTS Compared to BR-2, longitudinal (BR-2: - 19.0 +/- 1.8%; BR31: -15.9 +/- 2.4%; BR70: -14.9 +/- 2.4%; BR+4hr: -16.0 +/- 2.1%) and radial (BR-2: 15.0 +/- 1.9%; BR31: 12.3 +/- 2.4%; BR70: 11.3 +/- 2.2%; BR+4hr: 13.5 +/- 2.5% ) strains were significantly impaired during and following bed rest (p |
---|