Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach
Modem aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever increasing demands for reusability, affordability, and reliability. The individual systems (which are often nonlinear) must be controlled safely and reliably in environments where it is vir...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modem aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever increasing demands for reusability, affordability, and reliability. The individual systems (which are often nonlinear) must be controlled safely and reliably in environments where it is virtually impossible to analyze-ahead of time- all the important and possible scenarios and environmental factors. For example, system components (e.g., gyros, bearings of reaction wheels, valves) may deteriorate or break during autonomous UAV operation or long-lasting space missions, leading to a sudden, drastic change in vehicle performance. Manual repair or replacement is not an option in such cases. Instead, the system must be able to cope with equipment failure and deterioration. Controllability of the system must be retained as good as possible or re-established as fast as possible with a minimum of deactivation or shutdown of the system being controlled. In such situations the control engineer has to employ adaptive control systems that automatically sense and correct themselves whenever drastic disturbances and/or severe changes in the plant or environment occur. |
---|