An Active Smart Material Control System for F/A-18 Buffet Alleviation
The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fati...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fatigue failure of the tails, and consequently limits the performance and super maneuverability of twin-tail fighter aircraft. An active smart material control system using distributed piezoelectric actuators has been developed for buffet alleviation and is presented. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the piezoelectric actuators are expressed with a three-dimensional finite-element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, control law, fluid structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. At 30 degree angle of attack, RMS values of tip acceleration are reduced by as much as 12%. The peak values of the power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The actively controlled piezoelectric actuators were also effective in adding damping at wide range of angles of attack. |
---|