Variable Stiffness Spar Wind-Tunnel Model Development and Testing

The concept of exploiting wing flexibility to improve aerodynamic performance was investigated in the wind tunnel by employing multiple control surfaces and by varying wing structural stiffness via a Variable Stiffness Spar (VSS) mechanism. High design loads compromised the VSS effectiveness because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Florance, James R., Heeg, Jennifer, Spain, Charles V., Ivanco, Thomas G., Wieseman, Carol D., Lively, Peter S.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of exploiting wing flexibility to improve aerodynamic performance was investigated in the wind tunnel by employing multiple control surfaces and by varying wing structural stiffness via a Variable Stiffness Spar (VSS) mechanism. High design loads compromised the VSS effectiveness because the aerodynamic wind-tunnel model was much stiffer than desired in order to meet the strength requirements. Results from tests of the model include stiffness and modal data, model deformation data, aerodynamic loads, static control surface derivatives, and fuselage standoff pressure data. Effects of the VSS on the stiffness and modal characteristics, lift curve slope, and control surface effectiveness are discussed. The VSS had the most effect on the rolling moment generated by the leading-edge outboard flap at subsonic speeds. The effects of the VSS for the other control surfaces and speed regimes were less. The difficulties encountered and the ability of the VSS to alter the aeroelastic characteristics of the wing emphasize the need for the development of improved design and construction methods for static aeroelastic models. The data collected and presented is valuable in terms of understanding static aeroelastic wind-tunnel model development.