Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Unuvar, C., Frederick, D. M., Shaw, B. D., Munir, Z. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.