Meridiani Planum Hematite Deposit: Potential for Preservation of Microfossils
Christensen et al., using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Meridiani Planum. The deposit corresponds closely to the low-albedo highlands unit sm, mapped as a wind-eroded, ancient, subaq...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Christensen et al., using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Meridiani Planum. The deposit corresponds closely to the low-albedo highlands unit sm, mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al. interpreted the Meridiani Planum deposit to be an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15% crystalline gray hematite. The Meridiani Planum hematite deposit has recently been designated as the prime landing site for one of the two Mars Exploration Rover (MER) spacecraft. The MER landings are scheduled for January, 2004. Christensen et al. discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life. |
---|