Biocybernetic Control of Vigilance Task Parameters
The major focus of the present proposal was to examine psychophysiological variables that are related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redef...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The major focus of the present proposal was to examine psychophysiological variables that are related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding the worker performance. Byrne and Parasuraman (1996) have argued for the use of psychophysiological measures in both the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. Previous investigations of the closed-loop adaptive automation system in our laboratory, supported by NASA, have employed a compensatory tracking task which involved the use of a joystick to maintain the position of a cursor in the middle of a video screen. This research demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative, compared to a positive, feedback condition. While tracking is comparable to some aspects of flying an airplane, it does not simulate the environment found in the cockpit of modern commercial airplanes. Since a large part of the flying responsibilities in commercial airplanes is automated, the primary responsibility of pilots is to monitor the automation and to respond when the automation fails. Because failures are relatively rare, pilots often suffer from hazardous states of awareness induced by long term vigilance of the automated system. Consequently, the aim of the current study was to investigate the ability of the closed-loop, adaptive automation system in a vigilance paradigm. It is also important to note that tracking involves a continuous, though low level, motor response. Since it is not clear how such activity might affect performance of the adaptive automation system, it was thought to be important to evaluate how the system functioned when there was minimal motor output by the subjects. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a vigilance task. Several experiments were conducted t |
---|