Assembly and Integration of Superconductive Measurement Circuits for a Spaceflight Experiment

Hybrid microelectronics containing both conventional electronic components and high-temperature superconductive films have been designed, fabricated, and tested. The devices operate from room temperature to 75K and perform d.c. four-probe resistance measurements on six superconductive specimens resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wise, Stephanie A., Hopson, Purnell, Jr, Mau, Johnny C.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid microelectronics containing both conventional electronic components and high-temperature superconductive films have been designed, fabricated, and tested. The devices operate from room temperature to 75K and perform d.c. four-probe resistance measurements on six superconductive specimens resident on each circuit. Four of these hybrid circuits were incorporated into the Materials In Devices As Superconductors (MIDAS) spaceflight experiment and evaluated over a 90-day period on the Mir space station. Prior to launch, comprehensive testing of the flight circuits was performed to determine the effects of thermal cycling, vibration loads, and long-term operation on circuit performance. This report describes the fabrication and assembly procedures used to produce the hybrid circuits, the techniques used to integrate the circuits into the MIDAS hardware system, and the results of pre-flight evaluations which verified circuit functionality.