Effect of Afterbody-Ejector Configurations on the Performance at Transonic Speeds of a Pylon-Supported Nacelle Model having a Hot-Jet Exhaust

An investigation of several afterbody-ejector configurations on a pylon-supported nacelle model has been completed in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05. The propulsive performance of two nacelle afterbodies with low boattailing and long ejector spacing was compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Swihart, John M., Mercer, Charles E., Norton, Harry T., Jr
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An investigation of several afterbody-ejector configurations on a pylon-supported nacelle model has been completed in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05. The propulsive performance of two nacelle afterbodies with low boattailing and long ejector spacing was compared with a configuration corresponding to a turbojet-engine installation having a highly boattailed afterbody with a short ejector. The jet exhaust was simulated with a hydrogen peroxide turbojet simulator. The angle of attack was maintained at 0 deg, and the average Reynolds number based on body length was 20 x 10(exp 6). The results of the investigation indicated that the configuration with a conical afterbody with smooth transition to a 15 deg boattail angle had large beneficial jet effects on afterbody pressure-drag coefficient and had the best thrust-minus-drag performance of the afterbody-ejector configurations investigated.