Low Cost Large Core Vehicle Structures Assessment
Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy pa...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy payloads into low earth orbit for missions such as a manned mission to Mars, a Next Generation Space Telescope, a lunar-based telescope, the Air Force's proposed space based laser, and large commercial satellites. In this study, structural concepts with the potential to reduce fabrication costs were evaluated in application to the Magnum Launch Vehicle (MLV) and the Liquid Fly Back Booster (LFBB) shuttle upgrade program. Seventeen concepts were qualitatively evaluated to select four concepts for more in-depth study. The four structural concepts selected were: an aluminum-lithium monocoque structure, an aluminum-lithium machined isogrid structure, a unitized composite sandwich structure, and a unitized composite grid structure. These were compared against a baseline concept based on the Space Shuttle External Tank (ET) construction. It was found that unitized composite structures offer significant cost and weight benefits to MLV structures. The limited study of application to LFBB structures indicated lower, but still significant benefits. Technology and facilities development roadmaps to prepare the approaches studied for application to MLV and LFBB were constructed. It was found that the cost and schedule to develop these approaches were in line with both MLV and LFBB development schedules. Current Government and Boeing programs which address elements of the development of the technologies identified are underway. It is recommended that NASA devote resources in a timely fashion to address the specific elements related to MLV and LFBB structures. |
---|