Reflectometer distance measurement between parallel conductive plates
This report presents an analytic and experimental investigation of the measurement problem in which a reflectometer is used to determine the distance to a target that is a highly conductive surface parallel to the reflectometer antenna ground plane. These parallel surfaces constitute a waveguide (WG...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This report presents an analytic and experimental investigation of the measurement problem in which a reflectometer is used to determine the distance to a target that is a highly conductive surface parallel to the reflectometer antenna ground plane. These parallel surfaces constitute a waveguide (WG) which can contribute parasitic perturbations that seriously degrade the accuracy of the measurements. Two distinct parallel-plate-waveguide (PPWG) phenomena are described, and their effects on both frequency and time-domain reflectometers are considered. The time-domain processing approach was found to be superior to a representative frequency-domain phase-measurement approach because of less susceptibility to perturbations produced by edge reflections and immunity to phase capture. Experimental results are presented which show that a simple radiating system modification can suppress parallel-plate (PP) propagation. The addition of a thin layer of lossy mu-metal 'magnetic absorber' to the antenna ground plane allowed a measurement accuracy of 0.025 cm (0.01 in.) when a vector network analyzer (VNA) is used as a time-domain reflectometer. |
---|