Airborne imaging of tropospheric emission at millimeter and submillimeter wavelengths
In September 1993, the NASA Millimeter-wave Imaging Radiometer (MIR) flew on board the NASA ER-2 high-altitude aircraft during CAMEX, and obtained the first wideband millimeter- and submillimeter-wavelength images of tropospheric emission. The MIR is a cross-track radiometer with channels at 89, 150...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In September 1993, the NASA Millimeter-wave Imaging Radiometer (MIR) flew on board the NASA ER-2 high-altitude aircraft during CAMEX, and obtained the first wideband millimeter- and submillimeter-wavelength images of tropospheric emission. The MIR is a cross-track radiometer with channels at 89, 150, 183 +/- 1, 3, 7, 220, and 325 +/- 1, 3, 8 GHz. This set provides upwelling brightness information at the two strong rotational water vapor lines at 183.310 and 325.153 GHz and three nearby atmospheric transmission windows. The wideband MIR images of convective raincells reveal unique cloud and precipitation mapping capabilities that are not available from lower frequency microwave channels. Comparisons between the 183 and 325 GHz spectra also reveal differential brightness temperature modes that are related to cloud water. |
---|