Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taylor, Arthur C., III, Hou, Gene W.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.