Instabilities orginating from suction holes used for Laminar Flow Control (LFC)

A small-scale wind tunnel previously used for turbulent boundary layer studies has been modified for experiments in laminar flow control. The facility incorporates suction through interchangeable porous test surfaces which are used to stabilize the boundary layer and delay transition to turbulent fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Watmuff, Jonathan H.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A small-scale wind tunnel previously used for turbulent boundary layer studies has been modified for experiments in laminar flow control. The facility incorporates suction through interchangeable porous test surfaces which are used to stabilize the boundary layer and delay transition to turbulent flow. The thin porous test surfaces are supported by a baffled plenum chamber box which also acts to gather the flow through the surface into tubes which are routed to a high pressure fan. An elliptic leading edge is attached to the assembly to establish a new layer on the test plate. A slot is used to remove the test section flow below the leading edge. The test section was lengthened and fitted with a new ceiling. Substantial modifications were also made to the 3D probe traverse. Detailed studies have been made using isolated holes to explore the underlying instability mechanisms. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance. Conditions corresponding to strong suction and without suction have been studied. In both cases, 3D contour surfaces in the vicinity of the hole show highly three-dimensional T-S waves that fan out away from the hole with streamwise distance. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the far field is similar to the case without suction. Downstream the contour surfaces of the bow-shaped TS waves develop spanwise irregularities which eventually form into clumps. The contours remain smooth when suction is not applied. Even without suction, the harmonic point source is challenging for CFD; e.g. DNS has been used for streamwise growth. With suction, grid resources are consumed by the hole and this makes DNS even more expensive. Limited DNS results so far indicate that the vortices which emanate from suction holes appear to be stable. The spanwise clumping observed in the experiment is evidence of a secondary instability that could be associated with suction vortices. A typical porous surface for LFC consists of 0.002 inch diameter holes with 0.020 inch grid spacing L, which is too small to resolve disturbances. A 20:1 scale porous test surface has been machined for improved spatial resolution while the L/d is still representative of flight conditions. Designers of porous surfaces use Goldsmith's criterion to minimize crossstream interaction. However nothing is known about the streamwise interactions. Results using two holes, aligne