Magellan spacecraft and memory state tracking: Lessons learned, future thoughts
Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed. |
---|