Global Magellan-image map of Venus at full resolution

During its first 243-day mapping cycle, the Magellan spacecraft succeeded in imaging 84 percent of the surface of Venus at resolutions on the order of 100 meters; subsequent cycles have increased the total coverage to over 97 percent and provided redundant coverage of much of the planet with differi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kirk, R. L., Edwards, K. B., Morgan, H. F., Soderblom, L. A., Stoewe, T. L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During its first 243-day mapping cycle, the Magellan spacecraft succeeded in imaging 84 percent of the surface of Venus at resolutions on the order of 100 meters; subsequent cycles have increased the total coverage to over 97 percent and provided redundant coverage of much of the planet with differing viewing geometries. Unfortunately, this full-resolution global dataset is in the form of thousands of individual orbit tracks (F-BIDR's) whose length-to-width ratio of nearly 1000:1 makes them minimally useful unless mosaicked. The Magellan project produced full-resolution mosaics (F-MIDR's) only for selected regions on the planet, whereas a global set of mosaics was made only at threefold degraded resolution (C1-MIDR's). Furthermore, although the F-MIDR's, which are approximately equidimensional, are much better suited for scientific interpretation than the F-BIDR's, they are still an unwieldy dataset: over 1500 quadrangles, each showing a region only about 600 km on a side, would be required to cover the entire planet. The USGS has therefore undertaken to produce and distribute a global, full resolution set of mosaics of the Magellan image data in a format that will be efficient for both hardcopy and digital use. The initial motivation was that it would provide an efficient means of verifying the integrity of the F-BIDR's to be archived on computer-compatible tape at the USGS Flagstaff facility. However, the resulting product, known as the FMAP, should also serve as an important resource for future scientific interpretation. It will offer several advantages beyond global coverage at full resolution. The first, alluded to above, is its division of the planet's surface to minimize the number of quadrangles and maximize their area, subject to the limits on the number of pixels imposed by state-of-the-art digital recording media and hardcopy output devices. The second, the use of improved 'cosmetic' processing techniques, will greatly reduce tonal discontinuities between component F-BIDR's in the FMAP compared to the standard Magellan mosaic products. Finally, wherever possible, the FMAP will incorporate data that were unavailable (e.g., because of processing delays) when the standard MIDR products were created, as well as data that were reprocessed to improve their radiometric or geometric quality.