The multicomponent structure of bulges
The morphology of disk galaxies is usually described by two major components, the centrally concentrated spheroidal component, called the bulge, and an oblate disk. The ratio of there contribution to the total luminosity - the bulge-to-disk ratio - is one of the parameters characterizing the Hubble...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The morphology of disk galaxies is usually described by two major components, the centrally concentrated spheroidal component, called the bulge, and an oblate disk. The ratio of there contribution to the total luminosity - the bulge-to-disk ratio - is one of the parameters characterizing the Hubble sequence. Following de Vaucouleurs (1948), for most galaxies the radial distribution of the outer spheroid is fairly well described by the r exp 1/4 law I(r)=I(sub 0) exp(-(alpha)r), whereas the radial luminosity distribution of the disk follows an exponential law: I(r)=I(sub 0) exp(-alpha(r exp 1/4)) (Freeman 1970), with r the radial distance from the center. I(sub 0) and alpha are characteristic constants for each individual galaxy. Parameters for the structural properties of these components give important constraints for models of the formation and evolution of galaxies. Therefore we have tried to decompose disk and bulge components from high S/N CCD observations of a sample of edge-on disk galaxies. A common procedure for the decomposition is to model one component in a region where it dominates and subtract it from the combined light distribution. This technique was successfully carried out e.g. by van der Kruit & Earl (1981, 1982) and Wakamatsu & Hamabe (1984, 1989). Here we present two more examples of bulge-dominated edge-on SO galaxies, namely ESO 506-G33 and NGC 7123, which show an additional small and concentrated central component besides disk and 'bulge'. |
---|