Defect behavior in electron-irradiated boron- and gallium-doped silicon

Production and anneal of defects in electron-irradiated, float-zone silicon solar cells were studied by DLTS. In boron- and gallium-doped, n+-p cells, dominant defects were due to the divacancy, carbon interstitial, and carbon complex. Results suggest that the DLTS peak normally ascribed to carbon c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drevinsky, P. J., Deangelis, H. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Production and anneal of defects in electron-irradiated, float-zone silicon solar cells were studied by DLTS. In boron- and gallium-doped, n+-p cells, dominant defects were due to the divacancy, carbon interstitial, and carbon complex. Results suggest that the DLTS peak normally ascribed to carbon complexes also involves gallium. For gallium- and, to a lesser extent, boron-doped samples, damaged lifetime shows substantial recovery only when the carbon-complex peak has annealed out at 400 C. In boron-doped, n+-p-p+ cells, a minority carrier trap (E1) was also observed by DLTS in cells with a boron p+, but not in those with an aluminum p+ back. A level at Ev + 0.31 eV appeared upon 150 C annealing (E1 out) in both p+ back types of samples.