Theoretical and experimental pressure distributions for a 71.2 degree swept arrow-wing configuration at subsonic, transonic, and supersonic speeds
A wind-tunnel test of an arrow-wing body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control-surface deflections, was conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. T...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A wind-tunnel test of an arrow-wing body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control-surface deflections, was conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art and newly developed attached- and separated-flow methods. Conditions were delineated under which these theories provide accurate basic and incremental aeroelastic loads predictions. Current state-of-the-art linear and nonlinear attached-flow methods were adequate only at small-angle-of-attack cruise conditions. Of the several separated-vortex methods evaluated, only the one utilizing a combination of linear source and quadratically varying doublet panels showed promise of yielding accurate loads distributions at moderate to large angles of attack. |
---|