Investigations of lubricant rheology as applied to elastohydrodynamic lubrication

Traction prediction in sliding elastohydrodynamic (EHD) contacts was examined along with an elastohydrodynamic lubrication simulation of the effects of load and speed on temperatures in the EHD contact. An existing shear stress theory and lubricant rheological model were studied and evaluated by app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kunz, R. K., Nagaraj, H. S., Sanborn, D. M., Winer, W. O.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traction prediction in sliding elastohydrodynamic (EHD) contacts was examined along with an elastohydrodynamic lubrication simulation of the effects of load and speed on temperatures in the EHD contact. An existing shear stress theory and lubricant rheological model were studied and evaluated by applying them to traction prediction. Results obtained using measured film thickness and surface temperature data, were compared with measured traction values. The infrared technique for measuring temperatures in an EHD contact was further developed and ball surface and fluid temperatures are reported for sliding speeds of 0.35 to 5.08 m/s at 0.52 to 2.03 GN/sq m maximum pressure and surface roughnesses of .011 to .381 micrometers c.1.a. The relationship between asperity interaction, as measured by relocation surface profilimetry and high frequency temperature measurements, and the ratio of film thickness to surface roughness was also studied.