One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations

Discourse relations bind smaller linguistic units into coherent texts. Automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Association for Computational Linguistics 2021-03, Vol.3, p.329-344
Hauptverfasser: Ji, Yangfeng, Eisenstein, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discourse relations bind smaller linguistic units into coherent texts. Automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a discourse relation, because the relation may depend on links between lowerlevel components, such as entity mentions. Our solution computes distributed meaning representations for each discourse argument by composition up the syntactic parse tree. We also perform a downward compositional pass to capture the meaning of coreferent entity mentions. Implicit discourse relations are then predicted from these two representations, obtaining substantial improvements on the Penn Discourse Treebank.
ISSN:2307-387X
2307-387X
DOI:10.1162/tacl_a_00142