Population Vectors Can Provide Near Optimal Integration of Information

Much attention has been paid to the question of how Bayesian integration of information could be implemented by a simple neural mechanism. We show that population vectors based on point-process inputs combine evidence in a form that closely resembles Bayesian inference, with each input spike carryin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2017-08, Vol.29 (8), p.2021-2029
Hauptverfasser: Orellana, Josue, Rodu, Jordan, Kass, Robert E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much attention has been paid to the question of how Bayesian integration of information could be implemented by a simple neural mechanism. We show that population vectors based on point-process inputs combine evidence in a form that closely resembles Bayesian inference, with each input spike carrying information about the tuning of the input neuron. We also show that population vectors can combine information relatively accurately in the presence of noisy synaptic encoding of tuning curves.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco_a_00992