Haptic Shape Processing in Visual Cortex

Humans typically rely upon vision to identify object shape, but we can also recognize shape via touch (haptics). Our haptic shape recognition ability raises an intriguing question: To what extent do visual cortical shape recognition mechanisms support haptic object recognition? We addressed this que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2014-05, Vol.26 (5), p.1154-1167
Hauptverfasser: Snow, Jacqueline C., Strother, Lars, Humphreys, Glyn W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans typically rely upon vision to identify object shape, but we can also recognize shape via touch (haptics). Our haptic shape recognition ability raises an intriguing question: To what extent do visual cortical shape recognition mechanisms support haptic object recognition? We addressed this question using a haptic fMRI repetition design, which allowed us to identify neuronal populations sensitive to the shape of objects that were touched but not seen. In addition to the expected shape-selective fMRI responses in dorsal frontoparietal areas, we observed widespread shape-selective responses in the ventral visual cortical pathway, including primary visual cortex. Our results indicate that shape processing via touch engages many of the same neural mechanisms as visual object recognition. The shape-specific repetition effects we observed in primary visual cortex show that visual sensory areas are engaged during the haptic exploration of object shape, even in the absence of concurrent shape-related visual input. Our results complement related findings in visually deprived individuals and highlight the fundamental role of the visual system in the processing of object shape.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn_a_00548