Sequential Monte Carlo Methods to Train Neural Network Models

We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent/sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2000-04, Vol.12 (4), p.955-993
Hauptverfasser: Freitas, J. F. G. de, Niranjan, M., Gee, A. H., Doucet, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent/sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequential Monte Carlo techniques. The new algorithm may be viewed as a global optimization strategy that allows us to learn the probability distributions of the network weights and outputs in a sequential framework. It is well suited to applications involving on-line, nonlinear, and nongaussian signal processing. We show how the new algorithm outperforms extended Kalman filter training on several problems. In particular, we address the problem of pricing option contracts, traded in financial markets. In this context, we are able to estimate the one-step-ahead probability density functions of the options prices.
ISSN:0899-7667
1530-888X
DOI:10.1162/089976600300015664