Detection of hepatocarcinogens by combination of liver micronucleus assay and histopathological examination in 2-week or 4-week repeated dose studies

[Abstract] Background: Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes and Environment 2022, Vol.44 (2), p.1-9
Hauptverfasser: Shuichi Hamada, Miyuki Shigano, Yumi Wako, Kazufumi Kawasako, Kensuke Satomoto, Tatsuya Mitsumoto, Takayuki Fukuda, Wakako Ohyama, Takeshi Morita, Makoto Hayashi
Format: Artikel
Sprache:jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Abstract] Background: Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-livertargeted genotoxic carcinogens (Group B) were evaluated. Results: In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). Conclusion: Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.
ISSN:1880-7046