Biomineralization and remineralizing potential of toothpastes containing nanosized β-calcium glycerophosphate : an in vitro study
[Abstract] To evaluate the effect of 1100 ppm F toothpastes supplemented with micrometric or nanosized β-CaGP (β-CaGPm/β-CaGPn) on artificial enamel remineralization, using a pH cycling model. Enamel blocks with artificial caries were randomly allocated into ten groups (n=10), according to the tooth...
Gespeichert in:
Veröffentlicht in: | Odontology 2024-10, Vol.112 (4), p.1186-1196 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Abstract] To evaluate the effect of 1100 ppm F toothpastes supplemented with micrometric or nanosized β-CaGP (β-CaGPm/β-CaGPn) on artificial enamel remineralization, using a pH cycling model. Enamel blocks with artificial caries were randomly allocated into ten groups (n=10), according to the toothpastes: without fluoride/β-CaGPm/β-CaGPn (negative control); 1100 ppm F (1100F); 1100F plus 0.125%, 0.25%, 0.5%, and 1.0% of β-CaGPm or β-CaGPn. The blocks were treated 2*/day with slurries of toothpastes. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); integrated mineral loss (ΔIMR); fluoride (F), calcium (Ca), and phosphorus (P) concentrations in the enamel; polydispersity index (PdI); and zeta potential (Zp) were determined. The data were analyzed by ANOVA (p0.001). The treatment with 1100E-0.25%β-CaGPn led to %SHR ~57 higher when compared to the 1100F group (p |
---|---|
ISSN: | 1618-1247 |