機械学習を用いた急性期脳卒中患者における退院時ADLに関する因子の検討: XGBoostおよびSHAP解析
【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recover...
Gespeichert in:
Veröffentlicht in: | 理学療法学 2023/10/20, Vol.50(5), pp.177-185 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recovery Stage下肢,Ability for Basic Movement Scale II(以下,ABMS-II)寝返り,Barthel index更衣,ABMS-II立位が高寄与順であった。【結論】急性期脳卒中患者の退院時ADLは,歩行や麻痺側下肢機能,動作能力が最も寄与することが示唆された。 |
---|---|
ISSN: | 0289-3770 2189-602X |
DOI: | 10.15063/rigaku.12376 |