QuasiFlow: a Nextflow pipeline for analysis of NGS-based HIV-1 drug resistance data
Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resistance to treatment failure, and this requires evaluation. However, the tools for...
Gespeichert in:
Veröffentlicht in: | Bioinformatics advances 2022-01, Vol.2 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resistance to treatment failure, and this requires evaluation. However, the tools for analyzing HIV-1 drug resistance (HIVDR) testing data are mostly web-based which requires uploading data to webservers. This is a challenge for laboratories with internet connectivity issues and instances with restricted data transfer across networks. We present QuasiFlow, a pipeline for reproducible analysis of NGS-based HIVDR testing data across different computing environments. Since QuasiFlow entirely depends on command-line tools and a local copy of the reference database, it eliminates challenges associated with uploading HIV-1 NGS data onto webservers. The pipeline takes raw sequence reads in FASTQ format as input and generates a user-friendly report in PDF/HTML format. The drug resistance scores obtained using QuasiFlow were 100% and 99.12% identical to those obtained using web-based HIVdb program and HyDRA web respectively at a mutation detection threshold of 20%. AVAILABILITY AND IMPLEMENTATION: QuasiFlow and corresponding documentation are publicly available at https://github.com/AlfredUg/QuasiFlow. The pipeline is implemented in Nextflow and requires regular updating of the Stanford HIV drug resistance interpretation algorithm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. |
---|---|
ISSN: | 2635-0041 2635-0041 |
DOI: | 10.1093/bioadv/vbac089 |