A method for small-area estimation of population mortality in settings affected by crises

BACKGROUND: Populations affected by crises (armed conflict, food insecurity, natural disasters) are poorly covered by demographic surveillance. As such, crisis-wide estimation of population mortality is extremely challenging, resulting in a lack of evidence to inform humanitarian response and confli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:POPULATION HEALTH METRICS 2022-01, Vol.20 (1)
Hauptverfasser: Checchi, Francesco, Testa, Adrienne, Gimma, Amy, Koum-Besson, Emilie, Warsame, Abdihamid
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Populations affected by crises (armed conflict, food insecurity, natural disasters) are poorly covered by demographic surveillance. As such, crisis-wide estimation of population mortality is extremely challenging, resulting in a lack of evidence to inform humanitarian response and conflict resolution. METHODS: We describe here a 'small-area estimation' method to circumvent these data gaps and quantify both total and excess (i.e. crisis-attributable) death rates and tolls, both overall and for granular geographic (e.g. district) and time (e.g. month) strata. The method is based on analysis of data previously collected by national and humanitarian actors, including ground survey observations of mortality, displacement-adjusted population denominators and datasets of variables that may predict the death rate. We describe the six sequential steps required for the method's implementation and illustrate its recent application in Somalia, South Sudan and northeast Nigeria, based on a generic set of analysis scripts. RESULTS: Descriptive analysis of ground survey data reveals informative patterns, e.g. concerning the contribution of injuries to overall mortality, or household net migration. Despite some data sparsity, for each crisis that we have applied the method to thus far, available predictor data allow the specification of reasonably predictive mixed effects models of crude and under 5 years death rate, validated using cross-validation. Assumptions about values of the predictors in the absence of a crisis provide counterfactual and excess mortality estimates. CONCLUSIONS: The method enables retrospective estimation of crisis-attributable mortality with considerable geographic and period stratification, and can therefore contribute to better understanding and historical memorialisation of the public health effects of crises. We discuss key limitations and areas for further development.
ISSN:1478-7954
1478-7954
DOI:10.1186/s12963-022-00283-6