Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath
The antimicrobial peptide Ab-Cath, is a promising candidate for development as treatment for antimicrobial resistant (AMR) bacterial infections. Future clinical use is hampered by Ab-Cath's cationic peptidic nature and limited therapeutic window . Here, we evaluated hyaluronic acid-based nanoge...
Gespeichert in:
Veröffentlicht in: | Nanomedicine: Nanotechnology, Biology and Medicine Biology and Medicine, 2023-07, Vol.52 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The antimicrobial peptide Ab-Cath, is a promising candidate for development as treatment for antimicrobial resistant (AMR) bacterial infections. Future clinical use is hampered by Ab-Cath's cationic peptidic nature and limited therapeutic window . Here, we evaluated hyaluronic acid-based nanogels for encapsulation of Ab-Cath to circumvent these limitations. Using microfluidics, monodispersed anionic nanogels of 156–232 nm encapsulating >99 % Ab-Cath were prepared. Unprecedented, lyophilization using polyvinyl alcohol and dextran-40 provided Ab-Cath nanogel protection and allowed easy dose adjustment. Lyophilized and redispersed Ab-Cath nanogels were as effective as Ab-Cath solution in killing AMR Staphylococcus aureus , Acinetobacter baumannii and Escherichia coli in biological fluids, and in reducing S. aureus and A. baumannii biofilms . Importantly, encapsulation of Ab-Cath in nanogels reduced Ab-Cath's cytotoxic effects on human fibroblasts by ≥10-fold. Moreover, cutaneous application of Ab-Cath nanogels eliminated bacteria colonizing 3D human skin. These findings affirm the use of nanogels to increase the selectivity index of antimicrobial peptides. |
---|---|
DOI: | 10.1016/j.nano.2023.102694 |