How does the skeletal oncology research group algorithm's prediction of 5-year survival in patients with chondrosarcoma perform on international validation?
Background The Skeletal Oncology Research Group (SORG) machine learning algorithm for predicting survival in patients with chondrosarcoma was developed using data from the Surveillance, Epidemiology, and End Results (SEER) registry. This algorithm was externally validated on a dataset of patients fr...
Gespeichert in:
Veröffentlicht in: | Clinical Orthopaedics and Related Research 2020-10, Vol.478 (10), p.2300-2308 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background The Skeletal Oncology Research Group (SORG) machine learning algorithm for predicting survival in patients with chondrosarcoma was developed using data from the Surveillance, Epidemiology, and End Results (SEER) registry. This algorithm was externally validated on a dataset of patients from the United States in an earlier study, where it demonstrated generally good performance but overestimated 5-year survival. In addition, this algorithm has not yet been validated in patients outside the United States; doing so would be important because external validation is necessary as algorithm performance may be misleading when applied in different populations. Questions/purposes Does the SORG algorithm retain validity in patients who underwent surgery for primary chondrosarcoma outside the United States, specifically in Italy? Methods A total of 737 patients were treated for chondrosarcoma between January 2000 and October 2014 at the Italian tertiary care center which was used for international validation. We excluded patients whose first surgical procedure was performed elsewhere (n = 25), patients who underwent nonsurgical treatment (n = 27), patients with a chondrosarcoma of the soft tissue or skull (n = 60), and patients with peripheral, periosteal, or mesenchymal chondrosarcoma (n = 161). Thus, 464 patients were ultimately included in this external validation study, as the earlier performed SEER study was used as the training set. Therefore, this study-unlike most of this type-does not have a training and validation set. Although the earlier study overestimated 5-year survival, we did not modify the algorithm in this report, as this is the first international validation and the prior performance in the single-institution validation study from the United States may have been driven by a small sample or non-generalizable patterns related to its single-center setting. Variables needed for the SORG algorithm were manually collected from electronic medical records. These included sex, age, histologic subtype, tumor grade, tumor size, tumor extension, and tumor location. By inputting these variables into the algorithm, we calculated the predicted probabilities of survival for each patient. The performance of the SORG algorithm was assessed in this study through discrimination (the ability of a model to distinguish between a binary outcome), calibration (the agreement of observed and predicted outcomes), overall performance (the accuracy of predictions), a |
---|---|
DOI: | 10.1097/CORR.0000000000001305 |