Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal

OBJECTIVETo review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRITISH MEDICAL JOURNAL 2020-04, Vol.369
Hauptverfasser: Wynants, L., Calster, B. van, Bonten, M.M.J., Collins, G.S., Debray, T.P.A., Vos, M. de, Haller, M.C., Heinze, G., Moons, K.G.M., Riley, R.D., Schuit, E., Smits, L.J.M., Snell, K.I.E., Steyerberg, E.W., Wallisch, C., Smeden, M. van
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVETo review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitted to hospital for covid-19 pneumonia.DESIGNRapid systematic review and critical appraisal.DATA SOURCESPubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 24 March 2020.STUDY SELECTIONStudies that developed or validated a multivariable covid-19 related prediction model.DATA EXTRACTIONAt least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool).RESULTS2696 titles were screened, and 27 studies describing 31 prediction models were included. Three models were identified for predicting hospital admission from pneumonia and other events (as proxy outcomes for covid-19 pneumonia) in the general population; 18 diagnostic models for detecting covid-19 infection (13 were machine learning based on computed tomography scans); and 10 prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay. Only one study used patient data from outside of China. The most reported predictors of presence of covid-19 in patients with suspected disease included age, body temperature, and signs and symptoms. The most reported predictors of severe prognosis in patients with covid-19 included age, sex, features derived from computed tomography scans, C reactive protein, lactic dehydrogenase, and lymphocyte count. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population (reported for all three models), from 0.81 to more than 0.99 in diagnostic models (reported for 13 of the 18 models), and from 0.85 to 0.98 in prognostic models (reported for six of the 10 models). All studies were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, and high risk of model overfitting. Reporting quality varied substantially between studies. Most reports did not include a description of the study population or intended use of the models, and calibration of predictions was rarely assessed.CONC
DOI:10.1136/bmj.m1328