Simulating the birth environment of circumstellar discs
Circumstellar discs are the reservoirs of gas and dust that surround young stars and have the potential to become planetary systems. Their evolution will determine the time and material available to form planets. Studying the evolution of circumstellar discs can then help us understand planet format...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circumstellar discs are the reservoirs of gas and dust that surround young stars and have the potential to become planetary systems. Their evolution will determine the time and material available to form planets. Studying the evolution of circumstellar discs can then help us understand planet formation and the diversity of observed planetary systems. These discs develop almost immediately after star formation, as a direct consequence of the collapse of a molecular cloud and angular momentum conservation. Their surroundings are rich in gas and neighbouring stars, which can be hostile to the discs and affect their evolution in different ways: dynamical encounters with nearby stars can truncate the discs; stellar winds and supernovae explosions can truncate, tilt, or completely destroy the discs; and the presence of bright, massive stars in the vicinity of circumstellar discs can heat their surface enough to evaporate mass from them. This process, known as external photoevaporation, is arguably one of the most important environmental mechanisms in depleting mass from young circumstellar discs. The work performed for this thesis consisted of simulating the early evolution of circumstellar discs in star clusters and the effects of the environment, in particular, truncations due to close encounters and photoevaporation. The results show that photoevaporation is extremely efficient in removing mass from the discs, greatly limiting the amount of material and time available to form planets. |
---|