A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision

Higher dimensional data such as video and 3D are the leading edge of multimedia retrieval and computer vision research. In this survey, we give a comprehensive overview and key insights into the state of the art of higher dimensional features from deep learning and also traditional approaches. Curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Multimedia Information Retrieval 2019-12, Vol.9, p.135-170
Hauptverfasser: Georgiou, T., Liu, Y., Chen, W., Lew, M.S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher dimensional data such as video and 3D are the leading edge of multimedia retrieval and computer vision research. In this survey, we give a comprehensive overview and key insights into the state of the art of higher dimensional features from deep learning and also traditional approaches. Current approaches are frequently using 3D information from the sensor or are using 3D in modeling and understanding the 3D world. With the growth of prevalent application areas such as 3D games, self-driving automobiles, health monitoring and sports activity training, a wide variety of new sensors have allowed researchers to develop feature description models beyond 2D. Although higher dimensional data enhance the performance of methods on numerous tasks, they can also introduce new challenges and problems. The higher dimensionality of the data often leads to more complicated structures which present additional problems in both extracting meaningful content and in adapting it for current machine learning algorithms. Due to the major importance of the evaluation process, we also present an overview of the current datasets and benchmarks. Moreover, based on more than 330 papers from this study, we present the major challenges and future directions.
DOI:10.1007/s13735-019-00183-w