Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation
Suitable methods and fit-for-purpose techniques are required to allow characterization of carbon-based nanomaterials (CB-NMs) in complex matrices. In this study, two methods were developed; a method for extraction and characterization of CB-NMs in biological media and a method for fractionation of n...
Gespeichert in:
Veröffentlicht in: | Environmental Pollution 2019-09, Vol.255 (2), p.113304 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suitable methods and fit-for-purpose techniques are required to allow characterization of carbon-based nanomaterials (CB-NMs) in complex matrices. In this study, two methods were developed; a method for extraction and characterization of CB-NMs in biological media and a method for fractionation of natural organic matter (NOM) coated CB-NMs in environmental matrices. The former method was developed by extracting carbon nanotubes (CNTs: sized 0.75 × 3000 nm) and nanoplastics (sized 60, 200 and 600 nm) from eggshells and characterizing the extracted CB-NMs in terms of particle size distribution using asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS). The latter method was developed using AF4-MALS to fraction NOM-coated CNT (sized 0.75 × 3000 nm) and nanoplastics (sized 60, 200 and 300 nm) in a simulated natural surface water and provide information about the size distribution of the CB-NM-NOM complexes. The developed AF4-MALS method successfully fractioned the CB-NM-NOM complexes based on hydrodynamic size and provided the size distribution of the complexes. The NOM corona did not shift significantly the median size of the CB-NMs. It influenced however the size distribution of the nanoplastics and CNTs. The sample preparation method failed to extract the CNTs (recovery 60%). The AF4-MALS fractogram showed that the extraction method did not significantly influence the size distribution of the nanoplastics of 60 and 200 nm size, whereas the peak of 600 nm nanoplastics shifted towards a smaller hydrodynamic size. In conclusion, the developed sample preparation method followed by the developed AF4-MALS method can be applied for extraction, separation and characterization of CB-NMs in biological and environmental matrices. Thus, the methods have a high potential to be methods of choice to investigate CB-NMs in future studies. |
---|---|
DOI: | 10.1016/j.envpol.2019.113304 |