Discovery of giant radio galaxies from NVSS: radio and infrared properties

Giant radio galaxies (GRGs) are one of the largest astrophysical sources in the Universe with an overall projected linear size of ∼0.7 Mpc or more. The last six decades of radio astronomy research has led to the detection of thousands of radio galaxies. However, only ∼300 of them can be classified a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY (ISSN 0035-8711) 2017-05, Vol.469 (3), p.2886-2906
Hauptverfasser: Dabhade, P., Gaikwad, M., Bagchi, J., Pandey-Pommier, M., Sankhyayan, S., Raychaudhury, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Giant radio galaxies (GRGs) are one of the largest astrophysical sources in the Universe with an overall projected linear size of ∼0.7 Mpc or more. The last six decades of radio astronomy research has led to the detection of thousands of radio galaxies. However, only ∼300 of them can be classified as GRGs. The reasons behind their large size and rarity are unknown. We carried out a systematic search for these radio giants and found a large sample of GRGs. In this paper, we report the discovery of 25 GRGs from the National Radio Astronomy Observatory Very Large Array Sky Survey, in the red-shift range z ∼ 0.07 to 0.67. Their physical sizes range from ∼0.8 Mpc to ∼4 Mpc. Eight of these GRGs have sizes ≥2 Mpc, which is a rarity. Here, for the first time, we investigate the mid-infrared (IR) properties of the optical hosts of the GRGs and classify them securely into various active galactic nuclei types using the WISE mid-IR colours. Using radio and IR data, four of the hosts of the GRGs were observed to be radio-loud quasars that extend up to 2 Mpc in radio size. These GRGs missed detection in earlier searches possibly because of their highly diffuse nature, low surface brightness and lack of optical data. The new GRGs are a significant addition to the existing sample. They will contribute to a better understanding of the physical properties of radio giants.
DOI:10.1093/mnras/stx860