Predicting habitat affinities of plant species using commonly measured functional traits
Questions Heinz Ellenberg classically defined "indicator" scores for species representing their typical positions along gradients of key environmental variables, and these have proven very useful for designating ecological distributions. We tested a key tenent of trait‐based ecology, i.e....
Gespeichert in:
Veröffentlicht in: | JOURNAL OF VEGETATION SCIENCE 2017-09, Vol.28 (5), p.1082-1095 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Questions
Heinz Ellenberg classically defined "indicator" scores for species representing their typical positions along gradients of key environmental variables, and these have proven very useful for designating ecological distributions. We tested a key tenent of trait‐based ecology, i.e. the ability to predict ecological preferences from species’ traits. More specifically, can we predict Ellenberg indicator scores for soil nutrients, soil moisture and irradiance from four well‐studied traits: leaf area, leaf dry matter content, specific leaf area (SLA) and seed mass? Can we use such relationships to estimate Ellenberg scores for species never classified by Ellenberg?Location
Global.
MethodsCumulative link models were developed to predict Ellenberg nutrients, irradiance and moisture values from Ln‐transformed trait values using 922, 981 and 988 species, respectively. We then independently tested these prediction equations using the trait values of 423 and 421 new species that occurred elsewere in Europe, North America and Morocco, and whose habitat affinities we could classify from independent sources as three‐level ordinal ranks related to soil moisture and irradiance. The traits were SLA, leaf dry matter content, leaf area and seed mass.
ResultsThe four functional traits predicted the Ellenberg indicator scores of site fertility, light and moisture with average error rates of |
---|---|
DOI: | 10.1111/jvs.12554 |