The influence of drug distribution and drug-target binding on target occupancy: The rate-limiting step approximation

The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Journal of Pharmaceutical Sciences 2017-05, Vol.109S, p.S83-S89
Hauptverfasser: Witte, W.E.A. de, Vauquelin, G., Graaf, P.H. van der, Lange, E.C.M. de
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentration as a result of a locally higher drug concentration that arises around the target, which leads to prolonged target exposure to the drug. This phenomenon has been approximated by the steady-state approximation, assuming a steady-state concentration around the target. Recently, a rate-limiting step approximation of drug distribution and drug-target binding has been published. However, a comparison between both approaches has not been made so far. In this study, the rate-limiting step approximation has been rewritten into the same mathematical format as the steady-state approximation in order to compare the performance of both approaches for the investigation of the influence of drug-target binding kinetics on target occupancy. While both approximations clearly indicated the importance of kon and high target concentrations, it was shown that the rate-limiting step approximation is more accurate than the steady-state approximation, especially when dissociation is fast compared to association and distribution out of the binding compartment. It is therefore concluded that the new rate-limiting step approximation is to be preferred for assessing the influence of binding kinetics on local target site concentrations and target occupancy.
DOI:10.1016/j.ejps.2017.05.024