Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties

We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2009-12, Vol.137 (12), p.4243-4253
1. Verfasser: Stapledon, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4253
container_issue 12
container_start_page 4243
container_title Proceedings of the American Mathematical Society
container_volume 137
creator Stapledon, Alan
description We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.
doi_str_mv 10.1090/S0002-9939-09-09969-9
format Article
fullrecord <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_410433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40590660</jstor_id><sourcerecordid>40590660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</originalsourceid><addsrcrecordid>eNqNkM1KxDAURoMoOI4-wkA2rqSatGnaLGXwDwZc6KzDTZrYDJ2mJEXt29ta6Vq4EMJ3vnvhILSh5JYSQe7eCCFpIkQmEjKN4CIRJ2hFSVkmvEz5KVotyDm6iPEwfqlgxQrtH-pQQ-hxXxsfBmx9wDv4CqbVBne-GXrfmYihrbAPylnfVFj72h994z8G7C2uh86E3gen8ScEZ3pn4iU6s9BEc_X3rtH-8eF9-5zsXp9etve7BFgq-iQrlaEFWMap1UKpnKesUhkUvIBSFVbRNDe6UpZWigvLwWS8YCwrClBQEpOt0c28t4Heta6tzLfsgjtCGKQHJ4PRPlSSUcKybKTzmdbBxxiMXVhK5GRS_pqUkyZJphlNSjH2rudeB1FDYwO02sWlnKaUilRM-zczd4ijjyVnJBeEczLmZM7hGP95-gchIY5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Stapledon, Alan</creator><creatorcontrib>Stapledon, Alan</creatorcontrib><description>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-09-09969-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Convex and discrete geometry ; Discrete mathematics ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Hyperplanes ; Integers ; Mathematical lattices ; Mathematical theorems ; Mathematics ; Matroids ; Polynomials ; Polytopes ; Research article ; Sciences and techniques of general use ; Vertices</subject><ispartof>Proceedings of the American Mathematical Society, 2009-12, Vol.137 (12), p.4243-4253</ispartof><rights>Copyright 2009 American Mathematical Society; reverts to public domain 28 years from publication</rights><rights>2009 American Mathematical Society</rights><rights>2009 INIST-CNRS</rights><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</citedby><cites>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/https://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23303,23307,27901,27902,57992,57996,58225,58229,77578,77580,77588,77590</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22119293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stapledon, Alan</creatorcontrib><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</description><subject>Convex and discrete geometry</subject><subject>Discrete mathematics</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Hyperplanes</subject><subject>Integers</subject><subject>Mathematical lattices</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Matroids</subject><subject>Polynomials</subject><subject>Polytopes</subject><subject>Research article</subject><subject>Sciences and techniques of general use</subject><subject>Vertices</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAURoMoOI4-wkA2rqSatGnaLGXwDwZc6KzDTZrYDJ2mJEXt29ta6Vq4EMJ3vnvhILSh5JYSQe7eCCFpIkQmEjKN4CIRJ2hFSVkmvEz5KVotyDm6iPEwfqlgxQrtH-pQQ-hxXxsfBmx9wDv4CqbVBne-GXrfmYihrbAPylnfVFj72h994z8G7C2uh86E3gen8ScEZ3pn4iU6s9BEc_X3rtH-8eF9-5zsXp9etve7BFgq-iQrlaEFWMap1UKpnKesUhkUvIBSFVbRNDe6UpZWigvLwWS8YCwrClBQEpOt0c28t4Heta6tzLfsgjtCGKQHJ4PRPlSSUcKybKTzmdbBxxiMXVhK5GRS_pqUkyZJphlNSjH2rudeB1FDYwO02sWlnKaUilRM-zczd4ijjyVnJBeEczLmZM7hGP95-gchIY5g</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Stapledon, Alan</creator><general>American Mathematical Society</general><general>American Mathematical Society, AMS</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>20091201</creationdate><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><author>Stapledon, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Convex and discrete geometry</topic><topic>Discrete mathematics</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Hyperplanes</topic><topic>Integers</topic><topic>Mathematical lattices</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Matroids</topic><topic>Polynomials</topic><topic>Polytopes</topic><topic>Research article</topic><topic>Sciences and techniques of general use</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stapledon, Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stapledon, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>137</volume><issue>12</issue><spage>4243</spage><epage>4253</epage><pages>4243-4253</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-09-09969-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2009-12, Vol.137 (12), p.4243-4253
issn 0002-9939
1088-6826
language eng
recordid cdi_latinindex_primary_oai_record_410433
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Convex and discrete geometry
Discrete mathematics
Exact sciences and technology
General mathematics
General, history and biography
Geometry
Hyperplanes
Integers
Mathematical lattices
Mathematical theorems
Mathematics
Matroids
Polynomials
Polytopes
Research article
Sciences and techniques of general use
Vertices
title Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ehrhart%20theory%20for%20Lawrence%20polytopes%20and%20orbifold%20cohomology%20of%20hypertoric%20varieties&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Stapledon,%20Alan&rft.date=2009-12-01&rft.volume=137&rft.issue=12&rft.spage=4243&rft.epage=4253&rft.pages=4243-4253&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-09-09969-9&rft_dat=%3Cjstor_latin%3E40590660%3C/jstor_latin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=40590660&rfr_iscdi=true