Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties
We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2009-12, Vol.137 (12), p.4243-4253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4253 |
---|---|
container_issue | 12 |
container_start_page | 4243 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 137 |
creator | Stapledon, Alan |
description | We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial. |
doi_str_mv | 10.1090/S0002-9939-09-09969-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_410433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40590660</jstor_id><sourcerecordid>40590660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</originalsourceid><addsrcrecordid>eNqNkM1KxDAURoMoOI4-wkA2rqSatGnaLGXwDwZc6KzDTZrYDJ2mJEXt29ta6Vq4EMJ3vnvhILSh5JYSQe7eCCFpIkQmEjKN4CIRJ2hFSVkmvEz5KVotyDm6iPEwfqlgxQrtH-pQQ-hxXxsfBmx9wDv4CqbVBne-GXrfmYihrbAPylnfVFj72h994z8G7C2uh86E3gen8ScEZ3pn4iU6s9BEc_X3rtH-8eF9-5zsXp9etve7BFgq-iQrlaEFWMap1UKpnKesUhkUvIBSFVbRNDe6UpZWigvLwWS8YCwrClBQEpOt0c28t4Heta6tzLfsgjtCGKQHJ4PRPlSSUcKybKTzmdbBxxiMXVhK5GRS_pqUkyZJphlNSjH2rudeB1FDYwO02sWlnKaUilRM-zczd4ijjyVnJBeEczLmZM7hGP95-gchIY5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Stapledon, Alan</creator><creatorcontrib>Stapledon, Alan</creatorcontrib><description>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-09-09969-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Convex and discrete geometry ; Discrete mathematics ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Hyperplanes ; Integers ; Mathematical lattices ; Mathematical theorems ; Mathematics ; Matroids ; Polynomials ; Polytopes ; Research article ; Sciences and techniques of general use ; Vertices</subject><ispartof>Proceedings of the American Mathematical Society, 2009-12, Vol.137 (12), p.4243-4253</ispartof><rights>Copyright 2009 American Mathematical Society; reverts to public domain 28 years from publication</rights><rights>2009 American Mathematical Society</rights><rights>2009 INIST-CNRS</rights><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</citedby><cites>FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/https://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2009-137-12/S0002-9939-09-09969-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23303,23307,27901,27902,57992,57996,58225,58229,77578,77580,77588,77590</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22119293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stapledon, Alan</creatorcontrib><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</description><subject>Convex and discrete geometry</subject><subject>Discrete mathematics</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Hyperplanes</subject><subject>Integers</subject><subject>Mathematical lattices</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Matroids</subject><subject>Polynomials</subject><subject>Polytopes</subject><subject>Research article</subject><subject>Sciences and techniques of general use</subject><subject>Vertices</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAURoMoOI4-wkA2rqSatGnaLGXwDwZc6KzDTZrYDJ2mJEXt29ta6Vq4EMJ3vnvhILSh5JYSQe7eCCFpIkQmEjKN4CIRJ2hFSVkmvEz5KVotyDm6iPEwfqlgxQrtH-pQQ-hxXxsfBmx9wDv4CqbVBne-GXrfmYihrbAPylnfVFj72h994z8G7C2uh86E3gen8ScEZ3pn4iU6s9BEc_X3rtH-8eF9-5zsXp9etve7BFgq-iQrlaEFWMap1UKpnKesUhkUvIBSFVbRNDe6UpZWigvLwWS8YCwrClBQEpOt0c28t4Heta6tzLfsgjtCGKQHJ4PRPlSSUcKybKTzmdbBxxiMXVhK5GRS_pqUkyZJphlNSjH2rudeB1FDYwO02sWlnKaUilRM-zczd4ijjyVnJBeEczLmZM7hGP95-gchIY5g</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Stapledon, Alan</creator><general>American Mathematical Society</general><general>American Mathematical Society, AMS</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>20091201</creationdate><title>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</title><author>Stapledon, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-38be17af461fc9bb5624db3a767a8b7fb125ecdbf1db69f6ae36744377aba80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Convex and discrete geometry</topic><topic>Discrete mathematics</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Hyperplanes</topic><topic>Integers</topic><topic>Mathematical lattices</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Matroids</topic><topic>Polynomials</topic><topic>Polytopes</topic><topic>Research article</topic><topic>Sciences and techniques of general use</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stapledon, Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stapledon, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>137</volume><issue>12</issue><spage>4243</spage><epage>4253</epage><pages>4243-4253</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-09-09969-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2009-12, Vol.137 (12), p.4243-4253 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_latinindex_primary_oai_record_410433 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | Convex and discrete geometry Discrete mathematics Exact sciences and technology General mathematics General, history and biography Geometry Hyperplanes Integers Mathematical lattices Mathematical theorems Mathematics Matroids Polynomials Polytopes Research article Sciences and techniques of general use Vertices |
title | Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ehrhart%20theory%20for%20Lawrence%20polytopes%20and%20orbifold%20cohomology%20of%20hypertoric%20varieties&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Stapledon,%20Alan&rft.date=2009-12-01&rft.volume=137&rft.issue=12&rft.spage=4243&rft.epage=4253&rft.pages=4243-4253&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-09-09969-9&rft_dat=%3Cjstor_latin%3E40590660%3C/jstor_latin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=40590660&rfr_iscdi=true |