Ehrhart theory for Lawrence polytopes and orbifold cohomology of hypertoric varieties

We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2009-12, Vol.137 (12), p.4243-4253
1. Verfasser: Stapledon, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ\delta-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ\delta-polynomial of a Lawrence polytope and use the injective part of the Hard Lefschetz Theorem for hypertoric varieties to deduce some inequalities between the coefficients of the δ\delta-polynomial.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-09-09969-9