Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares

This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista colombiana de matemáticas 2003, Vol.37 (2), p.81-86
Hauptverfasser: Braicovich, Teresa, Osio, Elsa, Bernardi, Cora, Costes, Cristina
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 2
container_start_page 81
container_title Revista colombiana de matemáticas
container_volume 37
creator Braicovich, Teresa
Osio, Elsa
Bernardi, Cora
Costes, Cristina
description This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs".
format Article
fullrecord <record><control><sourceid>latinindex</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_409792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_record_409792</sourcerecordid><originalsourceid>FETCH-latinindex_primary_oai_record_4097923</originalsourceid><addsrcrecordid>eNqVij0LwjAUADMoWD_-Q0ZFCyGNLZ2l4q57eDWvNTVt5KUF--91EJ2d7jhuwiIhEhVnSqYzNg-hEULKdC8jVpx9SciNrQkqHziYZuj6t4x8fds1m18wyNvB9fa73mPCenBAGJZsWoELuPpwwbbH4nI4xQ5629nO4FM_yLZAo_ZgNeHVk9FK5Fkuk__uFx2UQfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares</title><source>Alma/SFX Local Collection</source><creator>Braicovich, Teresa ; Osio, Elsa ; Bernardi, Cora ; Costes, Cristina</creator><creatorcontrib>Braicovich, Teresa ; Osio, Elsa ; Bernardi, Cora ; Costes, Cristina</creatorcontrib><description>This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs".</description><identifier>ISSN: 0034-7426</identifier><language>spa</language><publisher>Sociedad Colombiana de Matemáticas</publisher><subject>Adjunction ; digraphs ; graphs ; precedence matrix</subject><ispartof>Revista colombiana de matemáticas, 2003, Vol.37 (2), p.81-86</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids></links><search><creatorcontrib>Braicovich, Teresa</creatorcontrib><creatorcontrib>Osio, Elsa</creatorcontrib><creatorcontrib>Bernardi, Cora</creatorcontrib><creatorcontrib>Costes, Cristina</creatorcontrib><title>Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares</title><title>Revista colombiana de matemáticas</title><description>This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs".</description><subject>Adjunction</subject><subject>digraphs</subject><subject>graphs</subject><subject>precedence matrix</subject><issn>0034-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqVij0LwjAUADMoWD_-Q0ZFCyGNLZ2l4q57eDWvNTVt5KUF--91EJ2d7jhuwiIhEhVnSqYzNg-hEULKdC8jVpx9SciNrQkqHziYZuj6t4x8fds1m18wyNvB9fa73mPCenBAGJZsWoELuPpwwbbH4nI4xQ5629nO4FM_yLZAo_ZgNeHVk9FK5Fkuk__uFx2UQfQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Braicovich, Teresa</creator><creator>Osio, Elsa</creator><creator>Bernardi, Cora</creator><creator>Costes, Cristina</creator><general>Sociedad Colombiana de Matemáticas</general><general>Universidad Nacional de Colombia</general><scope>77F</scope></search><sort><creationdate>2003</creationdate><title>Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares</title><author>Braicovich, Teresa ; Osio, Elsa ; Bernardi, Cora ; Costes, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-latinindex_primary_oai_record_4097923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2003</creationdate><topic>Adjunction</topic><topic>digraphs</topic><topic>graphs</topic><topic>precedence matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braicovich, Teresa</creatorcontrib><creatorcontrib>Osio, Elsa</creatorcontrib><creatorcontrib>Bernardi, Cora</creatorcontrib><creatorcontrib>Costes, Cristina</creatorcontrib><collection>Latindex</collection><jtitle>Revista colombiana de matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braicovich, Teresa</au><au>Osio, Elsa</au><au>Bernardi, Cora</au><au>Costes, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares</atitle><jtitle>Revista colombiana de matemáticas</jtitle><date>2003</date><risdate>2003</risdate><volume>37</volume><issue>2</issue><spage>81</spage><epage>86</epage><pages>81-86</pages><issn>0034-7426</issn><abstract>This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs".</abstract><pub>Sociedad Colombiana de Matemáticas</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-7426
ispartof Revista colombiana de matemáticas, 2003, Vol.37 (2), p.81-86
issn 0034-7426
language spa
recordid cdi_latinindex_primary_oai_record_409792
source Alma/SFX Local Collection
subjects Adjunction
digraphs
graphs
precedence matrix
title Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-latinindex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobre%20digrafos%20adjuntos%20y%20(h,j)%20adjuntos%20de%20multidigrafos%20k-regulares&rft.jtitle=Revista%20colombiana%20de%20matem%C3%A1ticas&rft.au=Braicovich,%20Teresa&rft.date=2003&rft.volume=37&rft.issue=2&rft.spage=81&rft.epage=86&rft.pages=81-86&rft.issn=0034-7426&rft_id=info:doi/&rft_dat=%3Clatinindex%3Eoai_record_409792%3C/latinindex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true