Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares

This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista colombiana de matemáticas 2003, Vol.37 (2), p.81-86
Hauptverfasser: Braicovich, Teresa, Osio, Elsa, Bernardi, Cora, Costes, Cristina
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs".
ISSN:0034-7426