Sobre digrafos adjuntos y (h,j) adjuntos de multidigrafos k-regulares
This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix repres...
Gespeichert in:
Veröffentlicht in: | Revista colombiana de matemáticas 2003, Vol.37 (2), p.81-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work connects the Graph Theory with the Matrix Theory. We demonstrate that every $^{(h,j)}G$ digraph of one multidigraph $k$-regular of $n$ vertexs has exactly $[k^{(h-j)}!]^{n \cdot k^j}$ different covering subdigraphs $(k^{(h-j)}-1)$-regulars. The demonstration is via a suitable matrix representation, using the permanent of the precedence matrix of the $(h,j)$ adjoint digraphs". |
---|---|
ISSN: | 0034-7426 |