Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities

We study the law of functionals whose prototype is $\int_0^{+\infty}$ $e^{B{_s}^{(\nu)}} dW{_s}{^{(\mu)}}$, where $B^{(\nu)}$, $W^{(\mu)}$ are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of invariant di ffusions on the hyperbolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2001-01, Vol.17 (3), p.587-605
Hauptverfasser: Baldi, Paolo, Cassadio Tarabusi, Enrico, Figà-Talamanca, Alessandro, Yor, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the law of functionals whose prototype is $\int_0^{+\infty}$ $e^{B{_s}^{(\nu)}} dW{_s}{^{(\mu)}}$, where $B^{(\nu)}$, $W^{(\mu)}$ are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of invariant di ffusions on the hyperbolic half plane. Emphasis is put on the fact that the results are obtained in two independent , very diff erent fashions ( invariant di ffusions on the hyperbolic half plane and Bessel processes).
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/305