Intrinsic credible regions: An objective Bayesian approach to interval estimation

This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2005-12, Vol.14 (2), p.317-384
1. Verfasser: Bernardo, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: they depend both on the loss function and on the prior specification. An invariant, information-theory based loss function, theintrinsic discrepancy is argued to be appropriate for scientific communication. Intrinsic credible regions are the lowest posterior loss regions with respect to the intrinsic discrepancy loss and the appropriate reference prior. The proposed procedure is completely general, and it is invariant under both reparametrization and marginalization. The exact derivation of intrinsic credible regions often requires numerical integration, but good analytical approximations are provided. Special attention is given to one-dimensional intrinsic credible intervals; their coverage properties show that they are always approximate (and sometimes exact) frequentist confidence intervals. The method is illustrated with a number of examples.[PUBLICATION ABSTRACT]
ISSN:1133-0686
1863-8260
DOI:10.1007/BF02595408