Oxidation of hydroxylamines to NO by plant cells

At least theoretically, plants may synthesize nitric oxide (NO) either by reduction of N in higher oxidations states, or by oxidation of more reduced N-compounds. The well established reductive pathway uses nitrite as a substrate, produced by cytosolic nitrate reductase. The only oxidative pathway d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant signaling & behavior 2009-09, Vol.4 (9), p.853-855
Hauptverfasser: Rümer, Stefan, Gupta Kapuganti, Jagadis, Kaiser, Werner M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At least theoretically, plants may synthesize nitric oxide (NO) either by reduction of N in higher oxidations states, or by oxidation of more reduced N-compounds. The well established reductive pathway uses nitrite as a substrate, produced by cytosolic nitrate reductase. The only oxidative pathway described so far comprises nitric oxide synthase (NOS)-like activity, where guanidino-N from L-arginine is oxidized to NO. In our previous paper we have demonstrated yet another form of oxidative NO formation, whereby hydroxylamine (HA), but also the AOX-inhibitor salicylhydroxamate (SHAM) is oxidized to NO by tobacco suspension cells. Oxidation of HA to NO was also demonstrated in vitro by using ROS producing enzymes. Apparently superoxide radicals and/or hydrogen peroxide served as oxidants. Another unexpected observation pointed to a special role for superoxide dismutase in oxidative NO formation.
ISSN:1559-2316
1559-2324
1559-2324
DOI:10.4161/psb.4.9.9378