A KV2.1 gating modifier binding assay suitable for high throughput screening

Gating modifier peptides alter gating of voltage-gated potassium (KV) channels by binding to the voltage sensor paddle and changing the energetics of channel opening. Since the voltage sensor paddle is a modular motif with low sequence similarity across families, targeting of this region should yiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Channels (Austin, Tex.) Tex.), 2009-11, Vol.3 (6), p.437-447
Hauptverfasser: Schmalhofer, William A., Ratliff, Kevin S., Weinglass, Adam, Kaczorowski, Gregory J., Garcia, Maria L., Herrington, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gating modifier peptides alter gating of voltage-gated potassium (KV) channels by binding to the voltage sensor paddle and changing the energetics of channel opening. Since the voltage sensor paddle is a modular motif with low sequence similarity across families, targeting of this region should yield highly specific channel modifiers. To test this idea, we developed a binding assay with the KV2.1 gating modifier, GxTX-1E. Monoiodotyrosine-GxTX-1E (125I-GxTX-1E) binds with high affinity (IC50 = 4 nM) to CHO cells stably expressing hKV2.1 channels, but not to CHO cells expressing Maxi-K channels. Binding of 125I-GxTX-1E to K V 2.1 channels is inhibited by another K V 2.1 gating modifier, stromatoxin (IC50 = 30 nM), but is not affected by iberiotoxin or charybdotoxin, pore blocking peptides of other types of potassium channels, or by ProTx-II, a selective gating modifier peptide of the voltage-gated sodium channel Na V 1.7. Specific 125I-GxTX-1E binding is not detectable when CHO-K V 2.1 cells are placed in high external potassium, suggesting that depolarization favors dissociation of the peptide. The binding assay was adapted to a 384-well format, allowing high throughput screening of large compound libraries. Interestingly, we discovered that compounds related to PAC, a di-substituted cyclohexyl K V channel blocker, displayed inhibitory binding activity. These data establish the feasibility of screening large libraries of compounds in an assay that monitors the displacement of a gating modifier from the channel's voltage sensor. Future screens using this approach will ultimately test whether the voltage sensor of K V channels can be selectively targeted by small molecules to modify channel function.
ISSN:1933-6950
1933-6969
DOI:10.4161/chan.3.6.10201