Ability of the Activated PI3K/Akt Oncoproteins to Synergize with MEK1 and Induce Cell Cycle Progression and Abrogate the Cytokine-Dependence of Hematopoietic Cells

Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2004-04, Vol.3 (4), p.501-510
Hauptverfasser: Shelton, John G., Blalock, William L., White, Edmond R., Steelman, Linda S., McCubrey, James A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from ?MEK1:ER-infected cells at a frequency of 5 x 10-5 indicating that low frequency of cells expressing ?-estradiol-regulated ?MEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from ?MEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either ?-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.3.4.813