Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer

Prostate cancer treatment resistance is a significant challenge facing the field. Genomic and transcriptomic profiling have partially elucidated the mechanisms through which cancer cells escape treatment, but their relation toward the tumor microenvironment (TME) remains elusive. Here we present a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NATURE COMMUNICATIONS 2024-11, Vol.15 (1)
Hauptverfasser: Kiviaho, Antti, Eerola, Sini K, Kallio, Heini M.L, Andersen, Maria K, Hoikka, Miina, Tiihonen, Aliisa M, Salonen, Iida, Spotbeen, Xander, Giesen, Alexander, Parker, Charles T.A, Taavitsainen, Sinja, Hantula, Olli, Marttinen, Mikael, Hermelo, Ismail, Ismail, Mazlina, Midtbust, Elise, Wess, Maximilian, Devlies, Wout, Sharma, Abhibhav, Krossa, Sebastian, Hakkinen, Tomi, Afyounian, Ebrahim, Vandereyken, Katy, Kint, Sam, Kesseli, Juha, Tolonen, Teemu, Tammela, Teuvo L.J, Viset, Trond, Storkersen, Oystein, Giskeodegard, Guro F, Rye, Morten B, Murtola, Teemu, Erickson, Andrew, Latonen, Leena, Bova, G. Steven, Mills, Ian G, Joniau, Steven, Swinnen, Johannes V, Voet, Thierry, Mirtti, Tuomas, Attard, Gerhardt, Claessens, Frank, Visakorpi, Tapio, Rautajoki, Kirsi J, Tessem, May-Britt, Urbanucci, Alfonso, Nykter, Matti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostate cancer treatment resistance is a significant challenge facing the field. Genomic and transcriptomic profiling have partially elucidated the mechanisms through which cancer cells escape treatment, but their relation toward the tumor microenvironment (TME) remains elusive. Here we present a comprehensive transcriptomic landscape of the prostate TME at multiple points in the standard treatment timeline employing single-cell RNA-sequencing and spatial transcriptomics data from 120 patients. We identify club-like cells as a key epithelial cell subtype that acts as an interface between the prostate and the immune system. Tissue areas enriched with club-like cells have depleted androgen signaling and upregulated expression of luminal progenitor cell markers. Club-like cells display a senescence-associated secretory phenotype and their presence is linked to increased polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) activity. Our results indicate that club-like cells are associated with myeloid inflammation previously linked to androgen deprivation therapy resistance, providing a rationale for their therapeutic targeting.
ISSN:2041-1723
2041-1723