Investigation of Mode-Induced Spin Wave Transmission Blockage by In Situ Nanoscale Grooves
In the pursuit of advancing spin-wave optics, the propagation of magnetostatic surface spin-waves is investigated in a uniform permalloy waveguide with in-situ nanopatterned grooves created through Atomic Force Microscopy nanolithography and Focused Ion Beam etching. The study unveils that the intro...
Gespeichert in:
Veröffentlicht in: | SMALL 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the pursuit of advancing spin-wave optics, the propagation of magnetostatic surface spin-waves is investigated in a uniform permalloy waveguide with in-situ nanopatterned grooves created through Atomic Force Microscopy nanolithography and Focused Ion Beam etching. The study unveils that the introduction of narrow constrictions and grooves leads to a non-monotonic reduction of the transmitted spin-wave signal intensity as the spin-wave pathway is shrinked. The remarkable feature that a stronger signal extinction is obtained for a narrow groove compared to a spin-waveguide interrupted by a full gap, where only inefficient transport through dipolar coupling is allowed, is highlighted. Combining experimental and numerical analyses, the intricate interplay between spin-wave diffraction and reflection at the waveguide edges is unraveled, being at the origin of a transverse-mode variation responsible for the signal extinction when detected using coplanar antennas. The findings offer insights into the controllable manipulation of detected spin-wave intensity, thereby opening promising avenues for the improvement of spin-wave switches and interferometers, and for the nanopatterning of graded index magnonics. |
---|---|
ISSN: | 1613-6810 |