Subjective evidence evaluation survey for many-analysts studies

Many-analysts studies explore how well an empirical claim withstands plausible alternative analyses of the same dataset by multiple, independent analysis teams. Conclusions from these studies typically rely on a single outcome metric (e.g. effect size) provided by each analysis team. Although inform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society Open Science 2024-07, Vol.11 (7)
Hauptverfasser: Sarafoglou, A, Hoogeveen, S, van den Bergh, D, Aczel, B, Albers, C.J, Althoff, T, Botvinik-Nezer, R, Busch, N.A, Cataldo, A.M, Devezer, B, van Dongen, N.N.N, Dreber, A, Fried, E.I, Hoekstra, R, Hoffman, S, Holzmeister, F, Huber, J, Huntington-Klein, N, Ioannidis, J, Johannesson, M, Kirchler, M, Loken, E, Mangin, J.-F, Matzke, D, Menkveld, A.J, Nilsonne, G, van Ravenzwaaij, D, Schweinsberg, M, Schulz-Kuempel, H, Shanks, D.R, Simons, D.J, Spellman, B.A, Stoevenbelt, A.H, Szaszi, B, Trübutschek, D, Tuerlinckx, Francis, Uhlmann, E.L, Vanpaemel, Wolf, Wicherts, J, Wagenmakers, E.-J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many-analysts studies explore how well an empirical claim withstands plausible alternative analyses of the same dataset by multiple, independent analysis teams. Conclusions from these studies typically rely on a single outcome metric (e.g. effect size) provided by each analysis team. Although informative about the range of plausible effects in a dataset, a single effect size from each team does not provide a complete, nuanced understanding of how analysis choices are related to the outcome. We used the Delphi consensus technique with input from 37 experts to develop an 18-item subjective evidence evaluation survey (SEES) to evaluate how each analysis team views the methodological appropriateness of the research design and the strength of evidence for the hypothesis. We illustrate the usefulness of the SEES in providing richer evidence assessment with pilot data from a previous many-analysts study.
ISSN:2054-5703
2054-5703